Ю. С. ФРОЛОВ, д. т. н., профессор;
Шэнь ЦЯОФЭН, аспирант
(кафедра «Тоннели и метрополитены» ПГУПС Императора Александра I)
(ОКОНЧАНИЕ. НАЧАЛО В No22)

УСКОРЕННЫЙ ЭКОНОМИЧЕСКИЙ РОСТ КИТАЯ В ПОСЛЕДНИЕ ДЕСЯТИЛЕТИЯ ОБУСЛОВИЛ ВЫСОКИЕ ТЕМПЫ РАЗВИТИЯ ТРАНСПОРТНОЙ ИНФРАСТРУКТУРЫ. МЕТРОПОЛИТЕНЫ ДЕЙСТВУЮТ И ПРОДОЛЖАЮТ СТРОИТЬСЯ В 41 ГОРОДЕ. В НАСТОЯЩЕЕ ВРЕМЯ РЕШЕНИЕ ЗАДАЧ, АКТУАЛЬНЫХ ДЛЯ КИТАЙСКОГО МЕТРОСТРОЕНИЯ, ЯВЛЯЕТСЯ ТЕМОЙ ИССЛЕДОВАНИЙ, ПРОВОДИМЫХ НА КАФЕДРЕ «ТОННЕЛИ И МЕТРОПОЛИТЕНЫ» ПГУПС ИМПЕРАТОРА АЛЕКСАНДРА I.

Рис. 7. Расчетная схема конечно-элементной модели
Рис. 7. Расчетная схема конечно-элементной модели

ПРОГНОЗ ГЕОМЕХАНИЧЕСКИХ ПРОЦЕССОВ ПРИ РАСКРЫТИИ ВЫРАБОТКИ МЕТОДОМ БОКОВЫХ ПИЛОТ-ТОННЕЛЕЙ

В большинстве вновь строящихся линий метрополитена в таких городах Китая, как Цунцин, Далянь, Циндао, Шэньчжэн, Чанчунь, строительство станционных комплексов осуществляется закрытым способом в малопрочных скальных и полускальных грунтах на глубине, соизмеримой с пролетом станции.

Задача второго этапа численного моделирования заключалась в разработке методики прогноза геомеханических процессов при поэтапном раскрытии выработки методом боковых пилот-тоннелей в конкретных условиях строительства односводчатой станции.

Исходные данные о физико-механических свойствах грунтового массива позволяют рассматривать его как упругопластическую среду, прочность которой задается критерием прочности Кулона–Мора.

Набрызг-бетонная крепь со стальными арками моделируется элементами оболочки. Приведенные модули упругости крепи по периметру проектного очертания выработки и по внутреннему контуру опережающих выработок равны соответственно Еꞌ пр = 23000 МПа и Еꞌꞌ пр = 2300 МПа. Железобетонные и фиберглассовые анкеры моделируются анкерными элементами. Прочность закрепления анкеров определена в соответствии с рекомендациями, изложенными в ВСН 126-90. «Крепление выработок набрызг-бетоном и анкерами при строительстве транспортных тоннелей и метрополитенов». М. :Минтрансстрой СССР, 1991, и принята в расчетах для железобетонных анкеров 176 кН, для фибергласовых — 138 кН на 1 м длины анкера.

В разработанных конечно-элементных моделях выделялись основные расчетные этапы, соответствующие технологическим этапам проходческих работ при сооружении станции.

С учетом специфики метода основное внимание уделено анализу устойчивости грунтового массива, заключенного между внутренними диафрагмами (ядро сечения). С этой целью рассматривались два возможных варианта производства работ после проходки и крепления боковых пилот-тоннелей: разработка грунта в ядре сечения с частичным разрушением внутренних диафрагм (рис. 7а) и разработка грунта в ядре сечения с разрушением диафрагм только после окончания и замыкания обратного свода (рис. 7б).

В процессе выполнения численного эксперимента фиксировались осадки поверхности земли, характер напряженно-деформированного состояния грунтового массива, вмещающего выработку, и грунта в центральной части выработки, смещения характерных точек как на контурной временной крепи (первичной обделке), так и на внутренних железобетонных диафрагмах, а также по величине усилий в анкерах.

Анализ вертикальных смещений шелыги свода и кровли выработки позволяет заключить, что принятая система крепления и порядок разработки пилот-тоннелей практически исключают смещение грунтового массива до окончания проходки боковых тоннелей (рис.8, этапы 1–6.).

Рис. 8. Последовательность раскрытия выработки с раз- рушением внутренних диафрагм в процессе разработки грунта (а) и с разрушением внутренних диафрагм после замыкания обратного свода (б): 1 — разработка грунта и крепление пилот-тоннеля в левой части калотты; 2 — разработка грунта и крепление пилот- тоннеля в правой части калотты; 3 — разработка уступа и устройство крепления в левом пилот-тоннеле; 4 — разработ- ка лотковой части в левом пилот-тоннеле; 5 – разработка уступа и устройство крепления в правом пилот-тоннеле; 6 — разработка лотковой части в правом пилот-тоннеле; 7 — разработка грунта с разрушением части внутренних стен и крепление свода калотты; 8 — разработка среднего уступа c разрушением части внутренних стен; 9 — разработ- ка нижнего уступа, бетонирование обратного свода
Рис. 8. Последовательность раскрытия выработки с раз- рушением внутренних диафрагм в процессе разработки грунта (а) и с разрушением внутренних диафрагм после замыкания обратного свода (б): 1 — разработка грунта и крепление пилот-тоннеля в левой части калотты; 2 — разработка грунта и крепление пилот- тоннеля в правой части калотты; 3 — разработка уступа и устройство крепления в левом пилот-тоннеле; 4 — разработ- ка лотковой части в левом пилот-тоннеле; 5 – разработка уступа и устройство крепления в правом пилот-тоннеле; 6 — разработка лотковой части в правом пилот-тоннеле; 7 — разработка грунта с разрушением части внутренних стен и крепление свода калотты; 8 — разработка среднего уступа c разрушением части внутренних стен; 9 — разработ- ка нижнего уступа, бетонирование обратного свода

При дальнейшей разработке грунта с одновременным разрушением внутренних диафрагм осадки земной поверхности нарастают постепенно и к завершению проходческих работ достигают 22 мм. В случае, если разработка ведется с сохранением железобетонных диафрагм в ядре сечения, осадки поверхности земли после раскрытия калотты стабилизируются при величине 7 мм (этап 7) и сохраняются до завершения проходческих работ. Однако после разрушения внутренних диафрагм осадки резко возрастают, но остаются в тех же пределах, которые были зафиксированы при выполнении работ по первому варианту.

По результатам численного анализа выявлен характер формирования и определены значения главных напряжений σ 3 и σ 1 в грунтовом массиве вблизи выработки, в ядре сечения с частичным разрушением внутренних диафрагм и при разработке грунта в ядре сечения с разрушением диафрагм только после окончания и замыкания обратного свода (рис. 9).

Риc. 9. Распределение максимальных главных напряжений (Па) и усилия в анкерах ( кН) по этапам выполнения проходческих работ: а — по первому варианту; б — по второму варианту
Риc. 9. Распределение максимальных главных напряжений (Па) и усилия в анкерах ( кН) по этапам выполнения проходческих работ: а — по первому варианту; б — по второму варианту

Характер напряженно-деформированного состояния крепи / первичной обделки существенно не изменяется при стадийной технологии раскрытия выработки по любой из рассмотренных технологических схем. Уровень максимальных и минимальных напряжений после раскрытия выработки на полное сечение обеспечивает со значительным запасом несущую способность конструкции в данных условиях строительства (рис. 10).

Рис. 10. Главные напряжения в крепи выработки после раскрытия на полное сечение (МПа)
Рис. 10. Главные напряжения в крепи выработки после раскрытия на полное сечение (МПа)

 

Таблица 2. Горизонтальное перемещение во внутренних диафрагмах, мм
Таблица 2. Горизонтальное перемещение во внутренних диафрагмах, мм

На различных этапах расчета, отражающих специфику проходческих операций, зафиксированы знакопеременные усилия в системе анкерной крепи не только на каждом из этапов раскрытия выработки, но и при разных вариантах выполнения проходческих операций (см. рис. 9). После разработки калотты с одновременным разрушением крепи пилот-тоннелей анкеры в своде работают на растяжение, достигая максимума после раскрытия выработки на полное сечение. Исключение составляют анкеры, испытывающие сжатие, расположенные на участке сопряжения стен с обратным сводом.

Вариант разработки грунта в ядре сечения с разрушением диафрагм вносит существенные коррективы в работу анкеров. Характер распределения и величина усилий в анкерах на участке примыкания внутренних диафрагм после разработки калотты (этап 7) резко изменяются. Диафрагмы, сохраненные до полного раскрытия сечения, сдерживают смещения грунта в ядре сечения и снижают вдвое максимальные усилия в анкерах.

Таблица 3. Главные напряжения во внутренних диафрагмах на этапах раскрытия выработки
Таблица 3. Главные напряжения во внутренних диафрагмах на этапах раскрытия выработки

Характер изменения напряженно-деформированного состояния внутренних диафрагм в процессе раскрытия выработки до проектного очертания представлен значениями смещений (табл. 2) и главных напряжений (табл. 3) в характерных точках этих элементов.

На рис. 11 показана картина формирования зоны пластических деформаций в грунтовом массиве. До разработки центральной части сечения в узлах сопряжения крепи пилот-тоннелей с элементами обратных сводов пластические деформации распространяются на глубину до 3 м. После раскрытия калотты область пластических деформаций смыкается в кровле выработки распространяясь на глубину 4 м, и эта граница остается постоянной до полного раскрытия выработки как по первому, так и по второму варианту.

Существенное влияние на напряженно-деформированное состояние как грунтового массива, так и элементов крепи отмечается после разработки и крепления калотты (этап 7). Возникшая локальная область пластических деформаций вблизи пят свода заметно увеличивается в глубь массива на каждом этапе работ и достигает 5–7 м. Следует также отметить, что после частичного разрушения диафрагм в верхней части грунтового ядра возникают области предельного равновесия, вследствие смещения диафрагм в сторону боковых тоннелей.

Рис. 11. Зоны пластических деформаций в грунтовом массиве на этапах проходческих работ: а — с частичным разрушением внутренних диафрагм по мере разработки грунта; б — с разрушением диафрагм после замыкания обратного свода
Рис. 11. Зоны пластических деформаций в грунтовом массиве на этапах проходческих работ: а — с частичным разрушением внутренних диафрагм по мере разработки грунта; б — с разрушением диафрагм после замыкания обратного свода

ОЦЕНКА СТЕПЕНИ ВЛИЯНИЯ ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ГРУНТОВОГО МАССИВА НА НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ СИСТЕМЫ «КРЕПЬ – ГРУНТОВЫЙ МАССИВ».

В основу исследований положена методика построения математических моделей с использованием вероятно-статистического метода системного анализа.

За входные параметры грунта приняты модуль деформации, коэффициент Пуассона, сцепление и угол внутреннего трения. Базовые значения входных параметров соответствовали грунтам IV и V классов. Интервал изменения их значений в расчетах показан в табл. 4.

Таблица 4. Входные параметры задачи
Таблица 4. Входные параметры задачи

В качестве выходных параметров были приняты напряжения, возникающие в крепи, и осадки земной поверхности, вызванные раскрытием выработки (учитывая их негативное влияние в городских условиях). Значения выходных параметров были получены путем преобразования входных параметров. Число преобразований, необходимых для составления достоверной вероятно-статистической модели, определилось методом планирования экспериментов.

Статистическая модель построена в виде степенного полинома методами нелинейной регрессии. Количество уравнений, описывающих модель, соответствовало числу выходных параметров задачи. Сведения о напряженно-деформированном состоянии системы «крепь — грунтовый массив» при различных вариантах входных параметров были получены в результате статистических расчетов, выполненных с использованием конечно-элементного программного комплекса Midas. Результаты представлены графиками, приведенными на рис. 12.

Рис. 12. Зависимость между выходными и входными параметрами задачи
Рис. 12. Зависимость между выходными и входными параметрами задачи

Для того чтобы провести сравнительный анализ степени влияния различных параметров, характеризующих прочностные и деформационные свойства грунтового массива на напряженно-деформированное состояние элементов рассматриваемой системы, принятые ее входные и выходные параметры представлены в безразмерных величинах. Эти действия выполнялись с использованием выражения (1) (Zhang Guang, Zhu Weishen. Parameter Sensitivity Analysis and Optimizing for Test Programs [J]. Rock and Soil Mechanics, 1993, 14(1): 51-58):

S i – степень влияния фактора x i , i =1, 2, 3, ..., n; |DP/P| и |Dx i /x i |— отношения отклонений выходного и входного параметров к их базовому значению.

При малых значениях |Dx i /x i | формула (1) может быть
аппроксимирована как:

 

Согласно формуле (2), выявлена степень влияния каждого из входных параметров задачи x i на величину искомых выходных параметров Р.

Если небольшое изменение входного параметра x i может вызвать значительное изменение выходного параметра Р, это означает, что x i является «высокочувствительным» параметром системной характеристики P, и наоборот, если изменение x i несущественно влияет на изменение P, то x i является «низкочувствительным» параметром. Иными словами, результаты расчета отражают «чувствительность» процесса силового взаимодействия элементов рассматриваемой системы при изменении прочностных идеформационных свойств грунтового массива. В частности, в малопрочных скальных и полускальных грунтах (IV и V классов) при заданных размерах выработки и принятых параметрах первичной обделки / временной крепи установлено: наибольшую степень влияния на величину максимальных напряжений в крепи(S = 0,6) и осадки земной поверхности (S = 0,9) на всем интервале расчетных параметров грунта оказывает модуль деформации грунтового массива (рис. 13а); увеличение коэффициента Пуассона не оказывает существенного влияния на выходные параметры, находясь в пределах величин 0,04 < S < 0,2 в полускальных грунтах и 0,2 < S < 0,3 в малопрочных скальных; изменение угла внутреннего трения практически не влияет на характер напряженно-деформированного состояния рассматриваемой системы.

Рис. 13. Степень влияния модуля деформации (а) и сцепления (б) на осадки земной поверхности и напряжения в крепи
Рис. 13. Степень влияния модуля деформации (а) и сцепления (б) на осадки земной поверхности и напряжения в крепи

Влияние величины сцепления на выходные параметры системы носит нелинейный характер и степень этого влияния на каждый из выходных параметров различна (рис. 13б). Так, в малопрочных полускальных грунтах при величине сцепления в пределах 0,08 МПа влияние на осадку поверхности возрастает, достигая максимального значения при 0,2 МПа (S = 0,48). Далее в интервале 0,2<<0,4 МПа зафиксировано заметное снижение «чувствительности» осадок земной поверхности к изменению сдвиговых характеристик грунта (0,5 < S < 0,03). Дальнейшее увеличение сцепления до граничного его значения не оказывает влияния на осадки земной поверхности. В полускальных грунтах (IV класс) максимальные растягивающие напряжения в крепи более чувствительны к изменению величины сцепления, чем напряжения сжатия. В интервале величин 0,08 < С < 0,2 МПа степень влияния сцепления на растягивающие напряжения возрастает, достигая значения (0,3< S < 0,4). Напряжения в крепи выработки, заложенной в более прочных грунтах менее, чувствительны к изменению величины сцепления, а при 0,6 < С < 1,1 МПа напряжения в крепи не изменяются с увеличением этого параметра.

ЗАКЛЮЧЕНИЕ

Проектирование и строительство односводчатых станций метрополитена горным способом в малопрочных скальных грунтах — технически и технологически сложная задача. Обеспечение устойчивости большепролетных выработок и разработка оптимальных конструктивно-технологических решений при стадийной технологии выполнении проходческих работ в первую очередь зависит от правильно принятых методов прогнозирования и последующих расчетов напряженно-деформированного состояния системы «крепь — грунтовый массив».

По совокупности результатов численного моделирования на каждом этапе выполнения проходческих работ определены осадки поверхности земли, характер напряженно-деформированного состояния грунтового массива, вмещающего выработку и грунтового целика, заключенного между боковыми пилот-тоннелями. Дана оценка напряженно-деформированного состояния всех элементов комбинированной временной крепи / первичной обделки.

Численная реализация математических моделей в процессе проведенного анализа позволила установить ряд закономерностей, характеризующих напряженно-деформированное состояние исследуемой системы «крепь — грунтовый массив», имеющих как теоретическое, так и прикладное значение.

Предложенная методика прогнозирования устойчивости большепролетных выработок при стадийной технологии выполнения проходческих работ позволит обоснованно принимать конструктивно-технологические решения, обеспечивающие высокие технологии проходческих работ и минимизацию конструктивных и технологических рисков.

ИНФОРМАЦИОННОЕ СОТРУДНИЧЕСТВО

г. Санкт-Петербург, ул. Будапештская 97, к.2, лит а
Тел: +7 (812) 905-94-36, +7 (931) 256-95-77